TT and ANF Representations of Boolean functions

Truth Table(TT)

The truth table representation is the default representation of a Boolean function as it directly translates the definition of a Boolean function. The TT of a Boolean function f on F_2^n is a binary vector of length 2^n , each element of this binary vector is an image corresponding to a unique element in F_2^n . Now we introduce a notation that lets us order the elements of the TT lexicographically. We replace each element $(x_0, x_1, \ldots, x_{n-1})$ in F_2^n by its decimal representation $x = x_0 2^{n-1} + x_1 2^{n-2} + \ldots + x_{n-1}$. So instead of writing $f(0, 0, \ldots, 0)$ we write f(0), instead of $f(0, 0, \ldots, 1)$ we write f(1), instead of $f(1, 1, \ldots, 1)$ we write $f(2^n - 1)$ and so on. This gives a lexicographical order on all the elements of F_2^n and allows us to define a Boolean function as $f = [f(0) \ f(1) \ f(2) \ \ldots \ f(2^n - 1)]$. For instance, suppose we have a 3-variable Boolean function $f = [0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1]$. Then our TT will be as shown in Table 2.1.

x	x_0	x_1	x_2	f(x)
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

Table 1: Truth table

Another representation that is closely related to the truth table is the polarity TT(PTT) or bipolar representation, and is widely used in telecommunications. It is defined as $(-1)^f = [(-1)^{f(0)} (-1)^{f(1)} \dots (-1)^{f(2^n-1)}]$ which means that instead of 0's in TT we have 1's in the PTT and instead of 1's in TT we have -1's in the PTT. So it is a sequence of $\{1, -1\}$'s.

Algebraic Normal Form(ANF)

The ANF is one of the most used representations in cryptography. An ANF of a Boolean function on F_2^n is a polynomial of the following form:

$$f(x_0, x_1, \dots, x_{n-1}) = \sum_{j=(j_0, \dots, j_{n-1}) \in F_2^n} a_j x_0^{j_0} x_1^{j_1} \cdots x_{n-1}^{j_{n-1}} \pmod{2}$$

where $a_j \in F_2$.

The algebraic degree of f, denoted by deg(f), is the number of variables in the longest term(s) of the ANF of f. If $deg(f) \leq 1$, then f is called an *affine* function. An affine function without the constant term (*i.e.* $a_0 = 0$) is often called a *linear* function. An affine function with deg(f) = 0, which is either f(x) = 0 or f(x) = 1, is called a *constant* function. The set of affine functions is denoted by A(n).

Let $C = [c_0 c_1 \ldots c_{2^n-1}]$ be the coefficient vector of the polynomial representing the Boolean function f. If $c_j = 1$, where $0 \leq j \leq 2^n - 1$, then the monomial $x_0^{j_0} x_1^{j_1} \cdots x_{n-1}^{j_{n-1}}$ exists in the ANF of f and does not otherwise, where $(j_0, j_1, \ldots, j_{n-1})$ is the binary representation of index j. For instance, if $C = [0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1]$ then the ANF is $x_0 + x_0 x_1 x_2$. The following theorem, shows a relation between C and the truth table $f = [f(0) \ f(1) \ f(2) \ \ldots \ f(2^n - 1)]$.

Theorem

Let f be the truth table of an n-variable Boolean function. Let be as defined above. Then

$$C = fA_n$$

where

$$A_n = \left[\begin{array}{cc} 1 & 1\\ 0 & 1 \end{array} \right]^{\otimes n}$$

That is A_n is the nth tensor power mod 2 of the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, or in other notation,

$$A_n = \begin{bmatrix} A_{n-1} & A_{n-1} \\ 0 & A_{n-1} \end{bmatrix} \quad and \quad A_0 = [1].$$

The above theorem helps us to convert from truth table to ANF and vice versa in almost 2^{2n} binary operations. The following algorithm reduces the conversion to only $O(n2^n)$ operations.

Algorithm: $TT \rightarrow ANF$

Input: TT of a Boolean function f**Output:** The coefficient vector of the ANF of fFor $0 \le k \le n$, define $f_{k,a} \in F_{2^k}$, where $0 \le a \le 2^{n-k} - 1$.

1. Set $f_{0,a} = f(a)$ for $0 \le a \le 2^n - 1$.

2. for
$$k = 0$$
 to $n - 1$ do
for $b = 0$ to $2^{n-k-1} - 1$ do
 $f_{(k+1),b} = [f_{k,2b} \ f_{k,(2b+1)} + f_{k,2b}]$

3.
$$C = f_{n,0}$$

The following example illustrates what the above algorithm does. Let us find the ANF of the Boolean function represented by the truth table in Table 2. We have $f = [0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1]$. Looking at the 1's positions in C we see that the ANF of f is $x_2 + x_1 + x_0 x_1$.

f	0	1	1	0	0	1	0	1
k = 0	0	1	1	1	0	1	0	1
k = 1	0	1	1	0	0	1	0	0
k = 2	0	1	1	0	0	0	1	0
$C = f_{3,0}$	0	1	1	0	0	0	1	0

Table 2: Converting TT to ANF algorithm

The above algorithm can also be used to convert from ANF to TT by changing the input from TT to C (the coefficients) of the ANF of f.