TT and ANF Representations of Boolean functions

Truth Table(TT)

The truth table representation is the default representation of a Boolean function as it directly translates the definition of a Boolean function. The TT of a Boolean function f on $F_{2}{ }^{n}$ is a binary vector of length 2^{n}, each element of this binary vector is an image corresponding to a unique element in $F_{2}{ }^{n}$. Now we introduce a notation that lets us order the elements of the TT lexicographically. We replace each element $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ in $F_{2}{ }^{n}$ by its decimal representation $x=x_{0} 2^{n-1}+x_{1} 2^{n-2}+\ldots+x_{n-1}$. So instead of writing $f(0,0, \ldots, 0)$ we write $f(0)$, instead of $f(0,0, \ldots, 1)$ we write $f(1)$, instead of $f(1,1, \ldots, 1)$ we write $f\left(2^{n}-1\right)$ and so on. This gives a lexicographical order on all the elements of $F_{2}{ }^{n}$ and allows us to define a Boolean function as f $=\left[f(0) f(1) f(2) \ldots f\left(2^{n}-1\right)\right]$. For instance, suppose we have a 3 -variable Boolean function $f=\left[\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 1\end{array} 01\right]$. Then our TT will be as shown in Table 2.1.

x	x_{0}	x_{1}	x_{2}	$f(x)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

Table 1: Truth table
Another representation that is closely related to the truth table is the polarity $\mathrm{TT}(\mathrm{PTT})$ or bipolar representation, and is widely used in telecommunications. It is defined as $(-1)^{f}=\left[(-1)^{f(0)}(-1)^{f(1)} \ldots(-1)^{f\left(2^{n}-1\right)}\right]$ which means that instead of 0's in TT we have 1's in the PTT and instead of 1's in TT we have -1 's in the PTT. So it is a sequence of $\{1,-1\}$'s.

Algebraic Normal Form(ANF)

The ANF is one of the most used representations in cryptography. An ANF of a Boolean function on $F_{2}{ }^{n}$ is a polynomial of the following form:

$$
f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\sum_{j=\left(j_{0}, \ldots, j_{n-1}\right) \in F_{2}^{n}} a_{j} x_{0}^{j_{0}} x_{1}^{j_{1}} \cdots x_{n-1}^{j_{n-1}}(\bmod 2)
$$

where $a_{j} \in F_{2}$.
The algebraic degree of f, denoted by $\operatorname{deg}(f)$, is the number of variables in the longest term(s) of the ANF of f. If $\operatorname{deg}(f) \leq 1$, then f is called an affine function. An affine function without the constant term (i.e. $a_{0}=0$) is often called a linear function. An affine function with $\operatorname{deg}(f)=0$, which is either $f(x)=0$ or $f(x)=1$, is called a constant function. The set of affine functions is denoted by $A(n)$.
Let $C=\left[\begin{array}{llll}c_{0} & c_{1} & \ldots & c_{2^{n}-1}\end{array}\right]$ be the coefficient vector of the polynomial representing the Boolean function f. If $c_{j}=1$, where $0 \leq j \leq 2^{n}-1$, then the monomial $x_{0}^{j_{0}} x_{1}^{j_{1}} \cdots x_{n-1}^{j_{n-1}}$ exists in the ANF of f and does not otherwise, where $\left(j_{0}, j_{1}, \ldots, j_{n-1}\right)$ is the binary representation of index j. For instance, if $C=[00001001]$ then the ANF is $x_{0}+x_{0} x_{1} x_{2}$. The following theorem, shows a relation between C and the truth table $f=$ $\left[f(0) f(1) f(2) \ldots f\left(2^{n}-1\right)\right]$.

Theorem

Let f be the truth table of an n-variable Boolean function. Let be as defined above. Then

$$
C=f A_{n}
$$

where

$$
A_{n}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{\otimes n}
$$

That is A_{n} is the nth tensor power mod 2 of the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, or in other notation,

$$
A_{n}=\left[\begin{array}{cc}
A_{n-1} & A_{n-1} \\
0 & A_{n-1}
\end{array}\right] \quad \text { and } \quad A_{0}=[1] .
$$

The above theorem helps us to convert from truth table to ANF and vice versa in almost $2^{2 n}$ binary operations. The following algorithm reduces the conversion to only $O\left(n 2^{n}\right)$ operations.

Algorithm: TT \rightarrow ANF
Input: TT of a Boolean function f
Output: The coefficient vector of the ANF of f
For $0 \leq k \leq n$, define $f_{k, a} \in F_{2^{k}}$, where $0 \leq a \leq 2^{n-k}-1$.

1. Set $f_{0, a}=f(a)$ for $0 \leq a \leq 2^{n}-1$.
2. for $k=0$ to $n-1$ do
for $\mathrm{b}=0$ to $2^{n-k-1}-1$ do

$$
f_{(k+1), b}=\left[f_{k, 2 b} f_{k,(2 b+1)}+f_{k, 2 b}\right]
$$

3. $C=f_{n, 0}$

The following example illustrates what the above algorithm does. Let us find the ANF of the Boolean function represented by the truth table in Table 2. We have $f=\left[\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 1\end{array} 01\right]$. Looking at the l's positions in C we see that the ANF of f is $x_{2}+x_{1}+x_{0} x_{1}$.

f	0	1	1	0	0	1	0	1
$k=0$	0	1	1	1	0	1	0	1
$k=1$	0	1	1	0	0	1	0	0
$k=2$	0	1	1	0	0	0	1	0
$C=f_{3,0}$	0	1	1	0	0	0	1	0

Table 2: Converting TT to ANF algorithm
The above algorithm can also be used to convert from ANF to TT by changing the input from TT to C (the coefficients) of the ANF of f.

