
Truth Table, ANF and Trace Definitions and

Input Examples

Truth Table

The truth table for an n-variable Boolean function ’f ’ should be in lexico-
graphical form, i.e., f = (f(0), f(1), f(2), . . . , f(2n−1)). Because the truth
table length might be big we represent it in hexadecimal rather than binary
bits. To represent a truth table in hexadecimal, starting from the first bit
we replace each four bits by their corresponding hexadecimal.For example,if
f = (0, 0, 1, 1, 1, 1, 1, 1), then to represent f , we take the first four bits (0011)
and replace them by 3 and take the second four bits (1111) and replace them
by F. Therefore, our hexadecimal representation for f = (0,0,1,1,1,1,1,1) is
3F. So to enter (0,0,1,1,1,1,1,1), you should just write 3F.

ANF

ANF, is an abbreviation for Algebraic Normal Form. The ANF of an n-
variable Boolean function is in the following form: f(x0, x1, . . . , xn−1) =
c0x0+c1x1+. . .+c0,1x0x1+. . .+c0,n−1x0x1+. . .+c0,1,...,n−1x0x1 · · ·xn−1 where
c0, c1, . . . , c0,1, . . . , c0,n−1, . . . , c0,1,...,n−1 are binary coefficients and x0, x1, . . . , xn−1

are the Boolean variables. To enter an ANF of a Boolean function, we make
a label for each variable. The variables xi, where 0 ≤ i ≤ 9, are labeled by
i. The variables x10, x11, . . . , x36, are labeled by the letters a, b, c, d, e, . . . , z.
In fact our website is able to cope for Boolean functions with variables up to
21. For example, to enter f(x0, x1, x2, . . . , x10, x11) = x0x11 +x1 +x0x2 +
x8x10, you should just write 0b, 1, 02, 8a. Another example, to enter
f(x0, x1, x2) = x0x1 + x1 + x2 + 1, you should write either *,01,1,2 or
,,01,1,2.

Trace

In the theory of finite fields, the trace function on the finite field Fpn is the

function Tr : Fpn → Fp defined by Tr(c) = c + cp + cp2
+ cp3

+ . . . + cp(n−1).
Here we are considering the case when p = 2, that is, when our finite field
is the binary field F2n . So our trace is a function Tr : F2n → F2. Define
the function Tr(xat+b) on F2n for 0 ≤ t ≤ 2n−2 and integers a, b. Let p(x)
be a primitive polynomial over F2n , then x can generate F2n , i.e., xt where

1



0 ≤ t ≤ 2n− 2 are all nonzero the elements of F2n . From the theory of finite
fields, we know that each element in F2n can be represented by a binary
string of length n, and we also know that F2n consists of all the possible
binary strings of length n. This means that for each value of xt, we have a
corresponding binary string. By evaluating Tr(xat+b) for 0 ≤ t ≤ 2n−2, we
obtain 2n − 1 binary values. Now, for each t, let Tr(xat+b) be an element in
the truth table at the position corresponding to the decimal representation of
the binary string corresponding to the element xt. Now, if we set a value at
position 0, we will have a complete truth table. This value can be either true
or false, but by convention we set it as false.The general form of the trace
function we are dealing with, is Tr(xa1t+b1)+Tr(xa2t+b2)+Tr(xa3t+b3)+ . . .+
Tr(xakt+bk), where a1, a2, a3, . . . , ak are different integers. We enter it in the
following form a1, b1/a2, b2/a3, b3/ . . . /ak, bk. There is a restriction on the
values of b1, b2, b3, . . . , bk depending on a1, a2, a3, . . . , ak respectively. In the
trace calculations, you need to enter a primitive polynomial p(x). We have
a simple way to enter it, by typing the number of variables in the primitive
polynomials textbox, n, you will immediately see a list containing all the
primitive polynomials of degree n from which you can select your primitive
polynomial. For example, to enter Tr(x3t+2)+Tr(x2t), you should just
write 3,2/2,0.

2


