
Noname manuscript No.
(will be inserted by the editor)

Fast Multiplication of the Algebraic Normal Forms
of Two Boolean Functions.

Subhabrata Samajder · Palash Sarkar

the date of receipt and acceptance should be inserted later

Abstract The contribution of this paper is twofold. Firstly, it proposes a
simple algorithm which performs the multiplication of two n-variate boolean
functions in their algebraic normal forms in O(n2n) time and O(2n) space.
Secondly, it proposes a fast implementation (MultANFw) of the algorithm
which works with w-bit words. Results for w = 8, 32 and 64 show that the
64-bit implementation is the fastest. To further analyze the performance, a
sparse implementation has been done, which we call quadratic implementation.
It has been observed that for a w-bit implementation, if the product of the
number of monomials of the two input polynomials is < 2n−log2 w, then the
quadratic implementation performs better than MultANFw. It is also found
that MultANFw performs much better than the algorithm internally used by
SAGE for all the three variants, i.e., w = 8, 32 and 64. Our study also indicates
that quadratic implementation performs better than SAGE.

Keywords Multivariate Polynomial Multiplication · Boolean Functions ·
Algebraic Normal Form (ANF)

1 Introduction

Let R = GF (2) [x1, x2, . . . , xn] /
〈
x21 − x1, . . . , x2n − xn

〉
. We consider polyno-

mials in R. Such polynomials can be considered to be the algebraic normal
form of n-variable Boolean functions, which are maps from {0, 1}n to {0, 1}.
Multiplication of Boolean functions is a basic operation and is of interest in
itself. Apart from this, it also has a wide range of applications.

Subhabrata Samajder
Applied Statistics Unit, Indian Statistical Institute
203, B. T. Road, Kolkata - 700108, INDIA E-mail: subhabrata r@isical.ac.in

Palash Sarkar
Applied Statistics Unit, Indian Statistical Institute
203, B. T. Road, Kolkata - 700108, INDIA E-mail: palash@isical.ac.in



2 Subhabrata Samajder, Palash Sarkar

The Buchberger’s algorithm ([Buc06], [Buc98]) and its improvements, the
F4 and F5 algorithms ([Fau99], [Fau02]), to compute the Gröbner basis over
R essentially use polynomial multiplications to cancel out the leading terms.
Hence, improving upon polynomial multiplications over R, will speed up these
algorithms.

The algebraic immunity ([CM03], [MPC04], [Dal06]) of Boolean functions,
is crucial to the security of the block ciphers and stream ciphers. The definition
of algebraic immunity says that the algebraic immunity for a Boolean function
f is the minimum degree of g, such that f.g = 0. Thus, one can see that
improving the time taken to multiply two Boolean functions in their ANF’s has
direct application to algebraic immunity. It also has applications in non-linear
codes, like higher order Reed-Muller Codes and Kerdock Codes ([PMS+98]).

Multiplication of two sparse polynomials p and q having lp and lq terms
each will have about lqlq terms and so the usual algorithm which takes O(lplq)
time, is optimal. It would be nice to investigate whether this can be improved
in case of dense polynomials, where the number of variables is, say 30.

Our Results : A simple observation leads to an O(n2n) time and O(2n) space
recursive algorithm. Asymptotically, this is competitive with general pur-
pose Fourier transform based multivariate polynomial multiplication algorithm
([Mat08]) specialized to the binary case. To the best of our knowledge, the bi-
nary case does not seem to have received separate attention. On the other
hand, for cryptographic application, the binary case is arguably the most im-
portant case.

Our contribution is not only in identifying a simple algorithm for multipli-
cation of ANF’s of Boolean functions, but also, in carrying out high quality
software implementation. We make a careful study of the algorithm and iden-
tify ways to speed up. The first issue is to avoid recursion. For this we simulate
the recursion tree independently for each of the two input polynomials p and
q. We call this as our pre-process step. Next, instead of bit level AND op-
erations, 8-bit table lookups are used to multiply two 3-variate polynomials
at once. After table lookups we again traverse up the recursion tree by doing
similar set of operation to finally get the product pq. This step is called the
post-process step.

Notice that the polynomials, can also be seen as a sequence of bits. To make
use of the w-bit word arithmetic and hence improve speed, the polynomials
are packed in w-bit words. Three different implementations of our algorithm
is proposed, by taking w = 8, 32 and 64. A detailed comparison amongst these
three implementations is given. Comparison with the software package SAGE
shows that our implementations work much better than SAGE.

We have also done an efficient sparse implementation, which we call the
quadratic implementation. It was then compared with the w-bit implemen-
tations mentioned above. We found that for the w-bit implementation if the
number lplq is greater or equal to 2n−log2 w, then the MultANFw algorithm
performs better than the quadratic implementation. For sparse case also, we



Fast Multiplication of the Algebraic Normal Forms of Two Boolean Functions. 3

have compared the quadratic implementation with that of SAGE and found
that the quadratic implementation works better than SAGE.

The organization is as follows : in Section 2, we give the basic idea and the
propose ways to further improve upon our basic idea. A non-recursive w-bit
implementation MultANFw is proposed in Section 3. In Section 4, we give a
detailed comparison of MultANFw, with its variants and with SAGE. Lastly,
in Section 5, we conclude this paper.

2 The Algorithm

In the first half of this section we give the basic idea, then we describe an
iterative algorithm for multiplying two boolean functions in their ANF’s and
lastly, we conclude the section by pointing out ways in which we can further
improve our iterative algorithm.

2.1 Basic Idea

Let, p (x1, . . . , xn) , q (x1, . . . , xn) ∈ R. Write,

p (x1, . . . , xn) = xn · p1 (x1, . . . , xn−1)⊕ p0 (x1, . . . , xn−1)

q (x1, . . . , xn) = xn · q1 (x1, . . . , xn−1)⊕ q0 (x1, . . . , xn−1) .

Then,

pq = (p1q1)x2n ⊕ (p1q0 ⊕ p0q1)xn ⊕ p0q0
= (p1q1 ⊕ p1q0 ⊕ p0q1)xn ⊕ p0q0;

[
Since, x2n = xn in R.

]
= {(p1 ⊕ p0) (q1 ⊕ q0)⊕ p0q0}xn ⊕ p0q0.

Thus, the number of (n− 1)-variate multiplications required is 2 instead of 4
at the cost of one extra addition.

Note 1 This is a very simple observation and leads naturally to a fast recursive
algorithm for multiplication of two ANF’s. To the best of our knowledge, it
does not seem that the literature records this approach for multiplication of
ANF’s.

Let, t(n) denote the time taken to multiply two n−variate polynomials and
e(n) denote the time taken to add two n−variate polynomial. Then, we have

t(n) = 2t(n− 1) + 4e(n− 1).

Solving, we get

t(n) = 2nt(0) + 4×
{
e(n− 1) + 2× e(n− 2) + 22 × e(n− 3) + . . .

+2n−2 × e(1) + 2n−1 × e(0)
}
.



4 Subhabrata Samajder, Palash Sarkar

Since, e(n) = 2n · e(0), using this we get,

t(n) = 2nt(0) + 4n2n−1e(0),

where, t(0) and e(0) denote the time taken for bit-wise AND and XOR. There-
fore,

t(n) = O(n2n) = O(2n+log2 n) = O(m log2m),

where m = 2n. For “dense” polynomials, the size of the input will be about
O(m) and so this O(m log2m) algorithm is very attractive.

On the other hand, if p and q are “sparse” having lp and lq monomials
respectively, then one would expect the product to have about lplq monomials.
The direct algorithm for multiplication will require O(lplq) time and is about
the best that one can expect. So the above O(m log2m) time algorithm is
better only if the two polynomials are “dense”. More comparative details are
given later.

2.2 An Iterative Algorithm

We represent polynomials in R using a sequence of bits. In this sequence,
we denote the presence of every monomial by a single bit. Since the number
of such possible monomials in R is 2n, we thus use 2n bits to represent any
polynomial in R.

It is clear that one can compute the values of p0, (p0 ⊕ p1) , q0 and (q0 ⊕ q1)
independently and then multiply them to get the required p0q0 and (p0 ⊕ p1) ·
(q0 ⊕ q1) . Thus one needs to compute p0 and p0 ⊕ p1 (respectively, q0 and
q0 ⊕ q1) from p (respectively, q). Using the same idea recursively, we thus get
two recursive tree (one each for p and q). Notice that both p0 and p1 ⊕ p0
are polynomials in n− 1 variables, namely x1, . . . , xn−1. Thus, we see that at
every step of the recursion the number of variables gets reduced by 1.

Suppose, p is represented by a 2n bit array A (say). Then, p0 corresponds
to the first 2n−1 bits of p and p1 the last 2n−1 bits of p. Hence, p0 ⊕ p1 is
nothing but bit-wise XOR of the 1st half with the 2nd half of A. In the next
step of the recursion tree, we repeat the same, each for p0 and p0 ⊕ p1 with n
now reduced to n−1. We go on doing this until n = 1. In which case, we reach
the leaves of the recursion tree. Notice that multiplication here is equivalent
to bit-wise AND-ing. Thus to multiply two polynomials p and q, we first build
two recursion tree independently, each having 2n 1-bit leaf nodes and then do
a bit-wise AND among the corresponding leaf nodes of p and q. Now, to get
the final result pq, we traverse upwards from the leaves (which contains the
bit-wise AND of the corresponding leaf nodes of p and q) to the root by doing
similar kind of operations. Notice that we now have p0q0 and (p0⊕p1)(q0⊕q1)
and we need (p0q0 ⊕ (p0 ⊕ p1)(q0 ⊕ q1))xn, which is equivalent to XOR-ing
p0q0 with (p0 ⊕ p1)(q0 ⊕ q1) and then concatenating the result with p0q0 (see
Figure 1).

Extracting a bit from a byte is costly. Hence, we use table - lookups to
avoid this. Instead of going all the way down to the nth level, we stop at



Fast Multiplication of the Algebraic Normal Forms of Two Boolean Functions. 5

p0q0 (p1 + p0)(q1 + q0)

pq = xn {(p1 + p0) (q1 + q0) + p0q0}+ p0q0

Fig. 1 Figure depicting the basic recursion step while returning back.

level n− β and use table lookups to perform multiplication of two β variable
polynomials. The value of β is taken to be 3, because the table corresponding
to β = 4 becomes very large. We thus pack the polynomials p and q in 8-bit
arrays and use 8-bit XOR to multiply p and q.

2.3 Further Improvement

One may use w-bit XOR instead of 8-bit, assuming the architecture allows
w-bit word arithmetic, where w = 2k, k ≥ 3. The motivation is to save on the
number of 8-bit XOR’s. Thus, using one w-bit XOR, one can save 2log2 w−3

many XOR’s. However, doing it this way one can only go up to n − log2 w
level, since, as mentioned in the previous section, maintaining a table of size
greater than 3-variables is not feasible. Hence using w-bit words, involves, an
additional task of UNPACKING and PACKING the w-bit word into bytes so
that one can use the 8-bit table lookup. The naive approach to do this, is to
copy each w-bit word into a byte array and basically use the same method
to multiply two log2 w-variate polynomials using an 8-bit table lookup. And
after multiplication copy back the result into a w-bit word.

We however, instead of directly copying the w-bit words to and back from
byte arrays, use a constant amount of extra space to get an algorithm which not
only saves us the cost of copying but also saves on the number of XOR’s. The
idea is to use 2log2 w−3 many w-bit word masks, say M1, . . .M2log2 w−3 plus an
additional temporary variable “temp”, where Mi contains 1 in the bit positions
j · 2log2 w−i + k, j ∈

{
0, 2, 4, . . . 2i − 2

}
and k ∈

{
0, 1, 2, . . . , 2log2 w−i − 1

}
and

0 elsewhere. The Mi’s actually simulate each level of the tree, corresponding
to each w-bit word. Thus, for example, during the 1st level of the tree for
each w-bit word, M1 consists of 1 in the bit positions 0, 1, . . . , 2log2 w−1 − 1
positions and 0 elsewhere. M1 is then AND-ed with the w-bit word to pick
the corresponding p0 (here we assume the left-most bit to be our LSB) and is
stored in the temporary word “temp”; “temp” is then right shifted by 2log2 w−1

and XOR-ed with the w-bit word to get the corresponding p0⊕ p1. Thus after
doing this we have p0 in the first half of the w-bit word and p0 ⊕ p1 in the
second half, which is what we wanted. Hence, for each level we need 3 (1 AND,
1 SHIFT and 1 XOR) w-bit operations. The PACKING process is the same as
that of UNPACKING, except that the masks are used in a reverse order. For
table look-ups we use 2log2 w−3 many additional masks, Bi+1, i ∈ {0, 1, 2, . . . ,



6 Subhabrata Samajder, Palash Sarkar

2log2 w−3 − 1
}

, to extract the corresponding ith byte from a w-bit word, where
Bi+1 contains 1 in the bit positions 8 ∗ i, 8 ∗ i+ 1, 8 ∗ i+ 2, . . . , 8 ∗ i+ 7 and 0
elsewhere.

Thus, for each level of PACKING and UNPACKING, we need 1 w-bit
AND, 1 SHIFT on a w-bit word and 1 w-bit XOR operations. Therefore, for
each PACKING and UNPACKING procedure we require 3 · (log2 w− 3) w-bit
operations. Also, for each table look-up we require 2 extra w-bit operations.
We need 1 AND for extracting a particular byte and 1 SHIFT to bring the
value of the extracted w-bit word within the range of 0 to 255. Since for each
w-bit word we require 2log2 w−3 many table look-ups therefore, for each w-bit
word we need 2 · 2log2 w−3 many w-bit operations for table look-ups.

3 A w-bit Non-recursive Algorithm

In this section, we summarize our discussion in Section 2 to give a w-bit
non-recursive algorithm, called MultANFw (see Algorithm 6). The routine
MultANFw takes as input T , A, B, n, w, where A and B are the corresponding
w-bit word representation of two n-variate polynomials (n > log2 w ≥ 3) and
T256×256 is a 8-bit table look-up. MultANFw multiplies the polynomials A and
B with the help of table T and stores the result in C.

To do this, the MultANFw routine calls the subroutines “PRE PROCESS”
(Algorithm 1), “UNPACK” (Algorithm 2), “EXTRACT AND LOOKUP” (Al-
gorithm 3), “PACK” (Algorithm 4) and “POST PROCESS” (Algorithm 5).
The subroutine PRE PROCESS corresponds to the operations while descend-
ing down the recursion tree, whereas the subroutine “POST PROCESS” cor-
responds to the operations while ascending up the recursion tree. Notice that
the subroutine ‘UNPACK” is called twice once each for the w-bit words A[i]
and C[i].

The subroutines PACK and UNPACK are the same as PACKING and UN-
PACKING, as described in the previous section (Section 2.3). The subroutine
EXTRACT AND LOOKUP extracts each byte from the w-bit words A and
B; does the corresponding table lookup and then stores the value returned by
the table in the exact byte position of C.

Algorithm 1: PRE PROCESS (A, B, n, i)

Input: A,B, n, i
for j = 0, 1, 2, . . . , 2i − 1 do

for k = 0, 1, . . . , 2n−i−1 − 1 do
A[2n−i−1 + j · 2n−i + k] = A[2n−i−1 + j · 2n−i + k]⊕A[j · 2n−i + k]
B[2n−i−1 + j · 2n−i + k] = B[2n−i−1 + j · 2n−i + k]⊕B[j · 2n−i + k]

end

end



Fast Multiplication of the Algebraic Normal Forms of Two Boolean Functions. 7

Algorithm 2: UNPACK (X, n) : Unpacks a w-bit word to a byte
array.

Input: a w-bit word X; n := log2 w − 3.
for i = 0, 1, 2, . . . , n− 1 do

temp = Bit-wise AND of X and Mi+1

temp = SHIFT right temp by 2n+3−i−1 (according to our assumption, the
left-most bit is the LSB)
X = temp XOR X

end

Algorithm 3: EXTRACT AND LOOKUP (X, Y , Z, n) : Extracts
bytes from w-bit words X and Y , does a table look-up and stores the
result in the corresponding byte of Z.

Input: w-bit words X, Y , Z; table T ; n := log2 w − 3
for i = 0, 1, . . . , 2n − 1 do

if i = 0 then
Z := T [X AND B1][Y AND B1]

end
else

temp := T [(X AND Bi+1) SHIFT left by i ·
23 bits.][(Y AND Bi+1) SHIFT left by i · 23 bits.] (According to our
assumption the left-most bit is the LSB).
Z := temp XOR Z

end

end

Algorithm 4: PACK (Z, n) : Packs a w-bit word into a byte array.

Input: a w-bit word Z; n := log2 w − 3.
for i = n− 1, n− 2, n− 3, . . . , 0 do

temp = Bit-wise AND of Z and Mi+1

temp = SHIFT right temp by 2n+3−i−1 (according to our assumption, the
left-most bit is the LSB)
Z = temp XOR Z

end

Cost Analysis For MultANFw : In both Algorithms 1 and 5, the loops run
for 2i · 2(n−log2 w)−i−1 = 2n−log2 w−1. For each such iteration, we do two w-bit
XOR’s for PRE PROCESS and one w-bit XOR for POST PROCESS. Hence,
the total number of w-bit XOR operations for each PRE PROCESS and
POST PROCESS call are 2 · 2n−log2 w−1 = 2n−log2 w and 2n−log2 w−1, respec-
tively. Also, notice that in MultANFw, PRE PROCESS and POST PROCESS
are each called n − log2 w many times. Therefore, the total number of w-
bit XOR operations required in the PRE PROCESS and POST PROCESS
part of MultANFw is (n − log2 w) · 2n−log2 w + (n − log2 w) · 2n−log2 w−1 =
3 · (n− log2 w) · 2n−log2 w−1.

As discussed in Section 2.3, for each w-bit word we require 3 · (log2 w− 3)
many w-bit operations for each call to PACK and UNPACK algorithm and



8 Subhabrata Samajder, Palash Sarkar

Algorithm 5: POST PROCESS (C, n, i)

Input: C, n, i
for j = 0, 1, 2, . . . , 2i − 1 do

for k = 0, 1, . . . , 2n−i−1 − 1 do
C[2n−i−1 + j · 2n−i + k] = C[2n−i−1 + j · 2n−i + k]⊕ C[j · 2n−i + k]

end

end

Algorithm 6: MultANF w (T , A, B, C, n, w) : A non recursive
algorithm to multiply two boolean functions in their ANF’s.

Input: 8-bit Look-up Table T ; Two polynomials A and B; C for Result; number
of varibles n; word size w

Output: C := Product of A and B
for i = 0, 1, 2, . . . , n− log2 w − 1 do

PRE PROCESS(A,B, n− log2 w, i)
end

for i = 0, 1, 2, . . . , 2n−log2 w − 1 do
UNPACK (A[i], log2 w − 3)
UNPACK (B[i], log2 w − 3)
EXTRACT AND LOOKUP (A[i], B[i], C[i], log2 w − 3)
PACKING (C[i], log2 w − 3)

end
for i = n− log2 w − 1, n− log2 w − 2, n− log2 w − 3, . . . , 0 do

POST PROCESS(C, n− log2 w, i)
end

2 ·2log2 w−3 many w-bit operations for table look-ups, plus 2log2w−3 many 8-bit
table look-ups. The total number of such w-bit words is 2n−log2 w. Also notice
that UNPACK is called twice whereas PACK is called once. Therefore, the
total cost to multiply two n-variate polynomial using our w-bit non-recursive
algorithm is :

1. 2log2 w−3 · 2n−log2 w = 2n−3 many 8-bit table look-ups.
2. 2 · 2n−log2 w · 2log2 w−3 = 2n−2 many w-bit operations for table look-ups.
3. 2n−log2 w · (3 · (3 · (log2 w − 3))) = 9 · (log2 w − 3) · 2n−log2 w many w-bit

operations for PACKING and UNPACKING.
4. 3 ·(n− log2 w) ·2n−log2 w−1 many w-bit XOR’s for the PRE PROCESS and

POST PROCESS.

4 Experimental Results

We present experimental results based on three separate implementations of
MultANFw, with w = 8, w = 32 and w = 64. We have used “C” language for
our implementation. To further gain in speed we did some further modifications
to our algorithm like using macro calls instead of function calls. The table T is
implemented as one-dimensional array instead of a two-dimensional one. Thus,
the entry corresponding to T [A[i]][B[i]] is now T [(A[i] << 8) +B[i]]. For code



Fast Multiplication of the Algebraic Normal Forms of Two Boolean Functions. 9

Average Average Speedup of Average Speedup of Speedup of

n Cycles Cycles 32-bit Cycles 64-bit 64-bit

for 8 bit for 32 bit w.r.t 8 bit for 64 bit w.r.t 8-bit w.r.t 32-bit

6 498.53 121.01 4.12 92.73 5.38 1.31

7 1138.23 428.95 2.65 199.38 5.71 2.15

8 2273.35 1032.89 2.20 1022.83 2.22 1.01

9 5013.86 1853.20 2.71 1276.61 3.93 1.45

10 11055.29 3871.94 2.86 2437.25 4.54 1.59

11 23608.47 8357.06 2.83 6010.26 3.93 1.39

12 34680.06 7711.84 4.50 5341.51 6.50 1.44

13 53976.73 16093.17 3.35 11153.91 4.84 1.44

14 103962.07 34223.26 3.04 23296.39 4.46 1.47

15 221928.42 73352.13 3.03 49992.79 4.44 1.47

16 466755.57 153265.65 3.05 101450.16 4.60 1.51

17 1014411.71 321682.42 3.15 212650.40 4.77 1.51

18 2075710.70 681210.39 3.05 441465.78 4.70 1.54

19 4401203.98 1433646.38 3.07 915821.38 4.81 1.57

20 9786430.84 3132142.40 3.13 2500430.46 3.91 1.25

21 20418478.40 6441914.73 3.17 5112594.99 3.99 1.26

22 43212647.62 13552823.50 3.19 10629153.25 4.07 1.28

23 89719530.45 28183683.11 3.18 21806265.54 4.11 1.29

24 190141764.33 59136263.78 3.22 45559914.11 4.17 1.30

25 401052397.73 130650693.03 3.07 106224818.55 3.78 1.23

26 838518978.22 299963811.34 2.80 272976258.05 3.07 1.10

27 1759215397.18 646245016.94 2.72 600701064.94 2.93 1.08

28 3635571731.89 1323794840.80 2.75 1239783643.15 2.93 1.07

29 7543793814.89 2735720452.18 2.76 2541063909.56 2.97 1.08

30 15606584912.85 5572652029.49 2.80 5109022401.64 3.06 1.09

Table 1 Table showing the speed (in cycles) comparisons between 8-bit, 32-bit and 64-bit
implementations.

optimization we have used “O1” and the “funroll-all-loops” directives of the
“gcc” compiler.

All our implementations were run on a HP Z800 Workstation. The machine
has 96 GB RAM, 12 Intel(R) Xeon(R) CPU X5675 3.07GHz processor, 384 kB
L1 cache, 1536 kB L2 cache and 12288 kB L3 cache. As for OS, we have used
”Ubuntu 12.04 LTS” with Linux 3.2.0-24-generic x86 64 kernel version. To get
the running time in terms of number of cycles, we have used the “RDTSC”
register, available in Intel processors. To train the “cache” and “branch predic-
tors”, we have used one-fourth of the total number of iterations (For further
details see Shay Gueron [Gue11]).

Table 1, compares the speed of our three implementations for number of
variables “n” ranging from 6 to 30. As expected, our 64-bit implementation
works faster than the other two implementations. A single multiplication of
30-variate polynomial using MultANFw can be done in 1.66 secs on an average.

We next compare our 8-bit implementation MultANF8 in “C” with that
of SAGE. Table 2 gives the comparison of the performance of MultANF8 with
SAGE. The entries in the tables, denote the running time in seconds (s) and
nanoseconds (ns). To get the timings in seconds and nanoseconds we have
used the functions “timeit” for SAGE. Same inputs were used for the two



10 Subhabrata Samajder, Palash Sarkar

n MultANFw sage

3 0.80 ns 94773.05 ns

4 1.84 ns 127928.97 ns

5 55.55 ns 197319.98 ns

6 70.78 ns 354038.95 ns

7 161.31 ns 762128.12 ns

8 718.90 ns 1700400.83 ns

9 799.88 ns 3205805.06 ns

10 1644.70 ns 7070338.01 ns

11 7151.90 ns 14413833.62 ns

12 15372.56 ns 32285171.03 ns

13 18514.16 ns 69974661.11 ns

14 36287.44 ns 162460117.1 ns

15 77486.74 ns 336447609.9 ns

Table 2 Comprison with SAGE. In each case, the timings are averaged over 1000 runs.

different implementations (i.e., C and SAGE). The table shows the running
time for n = 3 to n = 15. For n = 16 and 17, the running time for SAGE
was significantly slower and for n = 18, SAGE had actually failed to compute
the product. Note here that, although the program corresponding to the given
input polynomials for n = 18 failed to compute in case of SAGE, this is not
true for every input. In fact, one observes that the algorithm used in SAGE
depends not only on the number of variables but also the on size of polynomials
it is multiplying. SAGE has no problem multiplying two polynomials if the
polynomials are sparse, even for number of variables much higher than 18.

4.1 Multiplying Sparse Polynomials

For sparse implementation, a monomial is represented by a δ-bit word and two
polynomials are given as two arrays A and B of monomials. Multiplication
of two polynomials corresponds to the bit-wise OR of the corresponding δ-
bit words. Suppose we want to multiply two sparse polynomials p with lq
monomials and q with lq monomials. For our sparse implementation (let us
call it the quadratic implementation), we take the input arrays A and B and
OR every element of array A with that of array B, and store them in another
array C. The array C is then sorted using a non recursive (the process stack
is simulated internally) implementation of randomized quick sort. Repetitions
are removed by either deleting the monomial (if its number of repetitions is
even) or replacing all the entries by just one entry (if the number of repetitions
is odd).

Experiments were done to compare the speeds of SAGE for sparse poly-
nomials with that of quadratic implementation. The experimental results not
only show that the algorithm used by SAGE is slower than the quadratic im-
plementation but also suggests that the SAGE algorithm depends both on the
sizes of A and B (i. e., lp and lq) and the number of variables involved. But



Fast Multiplication of the Algebraic Normal Forms of Two Boolean Functions. 11

the quadratic implementation only depends on lp and lq. For example to mul-
tiply two polynomials each with 1000 monomials SAGE took 7.43 seconds for
n = 30 and 34 seconds for n = 63, whereas for the quadratic implementation
it took 0.17 seconds for bot n = 30 and n = 63.

Based on experimental results, we also found that if lplq < 2n−α, then the
quadratic algorithm performs better than MultANF2α , where α = 3, 5, 6.

5 Conclusion

In this paper we have proposed a new non-recursive algorithm MultANFw,
which multiplies two Boolean functions in their ANF’s. MultANFw tries to
use the w-bit word arithmetic, if the architecture supports it. With this in
mind, three variants of MultANFw are proposed for w = 8, 32 and 64. We
show that the 64-bit implementation is better than the other two. A detailed
comparison of MultANFw with a sparse implementation tells us, when one
should switch from the sparse implementation to the dense implementation,
i.e., MultANFw. Lastly, a comparison between our implementations (sparse
and dense implementations) with that of the software package SAGE shows
that, our implementations are faster than SAGE.

The MultANF64 algorithm is used to symbolically compute TRIVIUM.
This is still a work in progress. We wish to do a thorough structural analysis
of the output polynomials of TRIVIUM and conduct different randomness
tests on it.

References

[Ber01] Daniel J. Bernstein. Multidigit multiplication for mathematicians, 2001. cr.yp.

to/papers/m3.pdf.
[BGTZ08] Richard P. Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul Zimmermann.

Faster multiplication in GF(2)[x]. In van der Poorten and Stein [vdPS08], pages
153–166.

[Bod07] Marco Bodrato. Towards optimal toom-cook multiplication for univariate and
multivariate polynomials in characteristic 2 and 0. In Carlet and Sunar [CS07],
pages 116–133.

[Buc98] B. Buchberger. An algorithmic criterion for the solvability of a system of algebraic
equations. Gröbner Bases and Applications, 251:535–545, 1998.

[Buc06] B. Buchberger. Bruno buchbergers phd thesis 1965: An algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of Symbolic Computation, 41(3):475–511, 2006.

[BZ] M. Bodrato and A. Zanoni. Karatsuba and toom-cook methods for multivariate
polynomials. www.emis.de/journals/AUA/ictami2011/Paper1-Ictami2011.pdf.

[CM03] N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear
feedback. Advances in CryptologyEUROCRYPT 2003, pages 644–644, 2003.

[CS07] Claude Carlet and Berk Sunar, editors. Arithmetic of Finite Fields, First Inter-
national Workshop, WAIFI 2007, Madrid, Spain, June 21-22, 2007, Proceedings,
volume 4547 of Lecture Notes in Computer Science. Springer, 2007.

[Dal06] D.K. Dalai. On some necessary conditions of boolean functions to resist algebraic
attacks. PhD thesis, Ph D thesis, Indian Statistical Institute, Kolkata, India, 2006.

[DCP] Christophe De Canniere and Bart Preneel. Trivium-specifications. estream,
ecrypt stream cipher project, report 2005/030 (2005).



12 Subhabrata Samajder, Palash Sarkar

[Fau99] J.C. Faugere. A new efficient algorithm for computing gröbner bases (F4). Jour-
nal of pure and applied algebra, 139(1):61–88, 1999.

[Fau02] J.C. Faugère. A new efficient algorithm for computing gröbner bases without
reduction to zero (F5). In Proceedings of the 2002 international symposium on
Symbolic and algebraic computation, pages 75–83. ACM, 2002.

[FSGL07] Haining Fan, Jiaguang Sun, Ming Gu, and Kwok-Yan Lam. Overlap-free
karatsuba-ofman polynomial multiplication algorithms. IACR Cryptology ePrint
Archive, 2007:393, 2007.

[Gue11] Shay Gueron. Software optimizations for cryptographic primitives on general pur-
pose x86 64 platforms. In INDOCRYPT’11, pages 399–400, 2011. (presentation
available at 2011.indocrypt.org/slides/gueron.pdf).

[Mat08] T. Mateer. Fast Fourier transform algorithms with applications. PhD thesis,
Clemson University, 2008.

[Moe76] R.T. Moenck. Practical fast polynomial multiplication. In Proceedings of the
third ACM symposium on Symbolic and algebraic computation, pages 136–148.
ACM, 1976.

[MPC04] W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of
boolean functions. In Advances in Cryptology-EUROCRYPT 2004, pages 474–
491. Springer, 2004.

[Ose11] Ivan V. Oseledets. Improved n-term karatsuba-like formulas in gf(2). IEEE
Trans. Computers, 60(8):1212–1216, 2011.

[O07] S. ONeil. Algebraic structure defectoscopy. In Special ECRYPT Workshop–Tools
for Cryptanalysis, 2007.

[PMS+98] V. Pless, FJ MacWilliams, NJA Sloane, RE Blahut, and RJ McEliece. Intro-
duction to the theory of error-correcting codes, 3rd. 1998.

[vdPS08] Alfred J. van der Poorten and Andreas Stein, editors. Algorithmic Number
Theory, 8th International Symposium, ANTS-VIII, Banff, Canada, May 17-22,
2008, Proceedings, volume 5011 of Lecture Notes in Computer Science. Springer,
2008.

[Zan] Alberto Zanoni. Iterative Karatsuba for multivariate polynomial multiplication.
http://bodrato.it/papers/zanoni/.


